Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels
نویسندگان
چکیده
Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis (Chen and Simmons, 2011) [1]. To better understand and quantify how microenvironmental cues influence VIC phenotype, we compared expression profiles of VICs cultured on/in poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. Here, we present both the raw and processed microarray data from these culture conditions. Interpretation of this data can be found in a research article entitled "Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype" (Mabry et al., 2015) [2].
منابع مشابه
A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture
A defined protocol for efficiently deriving endothelial cells from human pluripotent stem cells was established and vascular morphogenesis was used as a model system to understand how synthetic hydrogels influence global biological function compared with common 2D and 3D culture platforms. RNA sequencing demonstrated that gene expression profiles were similar for endothelial cells and pericytes...
متن کاملHydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway.
Matrix elasticity regulates proliferation, apoptosis, and differentiation of many cell types across various tissues. In particular, stiffened matrix in fibrotic lesions has been shown to promote pathogenic myofibroblast activation. To better understand the underlying pathways by which fibroblasts mechano-sense matrix elasticity, we cultured primary valvular interstitial cells (VICs) isolated fr...
متن کاملA 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
The cardiovascular system is particularly well-suited to modelling with microfluidic technologies, and much progress has been made to create microfluidic devices that mimic the microvasculature. In contrast, microfluidic platforms that model larger blood vessels and heart valves are lacking, despite the clear potential benefits of improved physiological relevance and enhanced throughput over tr...
متن کاملDirecting valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform.
Three dimensional (3D) hydrogel platforms are powerful tools, providing controllable, physiologically relevant microenvironments that could aid in understanding how various environmental factors direct valvular interstitial cell (VIC) phenotype. Continuous activation of VICs and their transformation from quiescent fibroblast to activated myofibroblast phenotype is considered to be an initiating...
متن کاملSynthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels.
Poly(ethylene glycol) (PEG) hydrogels are popular for cell culture and tissue-engineering applications because they are nontoxic and exhibit favorable hydration and nutrient transport properties. However, cells cannot adhere to, remodel, proliferate within, or degrade PEG hydrogels. Methacrylated gelatin (GelMA), derived from denatured collagen, yields an enzymatically degradable, photocrosslin...
متن کامل